Biomechanical time dependency of the periodontal ligament: a combined experimental and numerical approach.
نویسندگان
چکیده
The analysis of the non-linear and time-dependent viscoelasticity of the periodontal ligament (PDL) enables a better understanding of the biomechanical features of the key regulator tissue for tooth movement. This is of great significance in the field of orthodontics as targeted tooth movement remains still one of the main goals to accomplish. The investigation of biomechanical aspects of the PDL function, a difficult area of research, helps towards this direction. After analysing the time-dependent biomechanical properties of pig PDL specimens in an in vitro experimental study, it was possible to confirm that PDL has a viscoelastic anisotropic behaviour. Three-dimensional finite element models of mini-pig mandibular premolars with surrounding tissues were developed, based on micro-computed tomography (μCT) data of the experimental specimens. Tooth mobility was numerically analysed under the same force systems as used in the experiment. A bilinear material parameter set was assumed to simulate tooth displacements. The numerical force/displacement curves were fitted to the experimental curves by repeatedly calculating tooth displacements of 0.2mm varying the loading velocities and the parameters, which describe the nonlinearity. The experimental results showed a good agreement with the numerical calculations. Mean values of Young's moduli E1, E2 and ultimate strain ε12 were derived for the elastic behaviour of the PDL for all loading velocities. E1 and E2 values increased with increasing the velocity, while ε12 remained relatively stable. A bilinear approximation of material properties of the PDL is a suitable description of measured force/displacement diagrams. The numerical results can be used to describe mechanical processes, especially stress-strain distributions in the PDL, accurately. Further development of suitable modelling assumptions for the response of PDL under load would be instrumental to orthodontists and engineers for designing more predictable orthodontic force systems and appliances.
منابع مشابه
A Mathematical Approach for Describing Time-Dependent Poisson’s Ratios of Periodontal Ligaments
Periodontal ligament is a thin layer of soft tissue that connects root of a tooth to the surrounding alveolar bone. These ligaments play an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. The majority of such soft tissues exhibit as viscoelastic bodies or have a time-dependent behavior. Due to the viscoelastic behavior of the periodontal ...
متن کاملA Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments
Introduction: Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and espe...
متن کاملPredicting the holistic force-displacement relation of the periodontal ligament: in-vitro experiments and finite element analysis
BACKGROUND The biomechanical property of the periodontal ligament (PDL) is important in orthodontics and prosthodontics. The objective of this study was to evaluate the feasibility of measuring the biomechanical behavior of the periodontal ligament using micro-computed tomography (micro-CT). METHODS A custom-made apparatus measured the force and displacement of a porcine PDL specimen within t...
متن کاملApplication of modified superposition model to viscoelastic behavior of periodontal ligament
The periodontal ligament (PDL) is a soft biological tissue which shows a strongly nonlinear and time dependent mechanical behavior. Recent experiments on rabbit PDL revealed that the rate of stress relaxation is strain dependent. This nonlinear behavior of PDL cannot be described well by the separable quasi linear viscoelasticity theory which is usually used in tissue biomechanics. Therefore, P...
متن کاملCanine Periodontal Stem Cells: Isolation, Differentiation Potential and Electronic Microscopic Characterization
Objective- Investigating of the isolation, culture, differentiation potential and electronic microscopic characterization of canine periodontal ligament stem cells (PDLSCs). Design- Experimental in vitro study Animals- Four intact, male, mongrel dogs, 8-10 months-old were selected to collect PDLSCs from their teeth. Procedures- The dogs were anesthetized and the first maxillary and mandibula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of orthodontics
دوره 35 6 شماره
صفحات -
تاریخ انتشار 2013